§ 60.1905 - (2) For Class I municipal waste combustion units only, concentration of nitrogen oxides emissions. - (3) Concentration of carbon monoxide emissions. - (4) Load level of your municipal waste combustion unit. - (5) Temperature of the flue gases at the inlet of your particulate matter air pollution control device. - (6) Average 6-minute opacity level. The data obtained from your continuous opacity monitoring system are not used to determine compliance with the limit on opacity emissions. - (b) If the results of your annual stack tests (as recorded in §60.1845(a)) show emissions above the limits specified in table 2 or 4 of this subpart as applicable for dioxins/furans, cadmium, lead, mercury, particulate matter, opacity, hydrogen chloride, and fugitive ash, include a copy of the test report that documents the emission levels and your corrective actions. - (c) For municipal waste combustion units that apply activated carbon to control dioxins/furans or mercury emissions, include two items: - (1) Documentation of all dates when the 8-hour block average carbon feed rate (calculated from the carbon injection system operating parameter) is less than the highest carbon feed rate established during the most recent mercury and dioxins/furans stack test (as specified in §60.1855(a)(1)). Include four items: - (i) Eight-hour average carbon feed rate. - (ii) Reasons for occurrences of low carbon feed rates. - (iii) The corrective actions you have taken to meet the carbon feed rate requirement. - (iv) The calendar date. - (2) Documentation of each quarter when total carbon purchased and delivered to the municipal waste combustion plant is less than the total required quarterly usage of carbon. If you choose to evaluate total carbon purchased and delivered on a municipal waste combustion unit basis, record the total carbon purchased and delivered for each individual municipal waste combustion unit at your plant. Include five items: - (i) Amount of carbon purchased and delivered to the plant. - (ii) Required quarterly usage of carbon. - (iii) Reasons for not meeting the required quarterly usage of carbon. - (iv) The corrective actions you have taken to meet the required quarterly usage of carbon. - (v) The calendar date. # § 60.1905 Can reporting dates be changed? - (a) If the Administrator agrees, you may change the semiannual or annual reporting dates. - (b) See §60.19(c) for procedures to seek approval to change your reporting date. MODEL RULE—AIR CURTAIN INCINERATORS THAT BURN 100 PERCENT YARD WASTE ## § 60.1910 What is an air curtain incinerator? An air curtain incinerator operates by forcefully projecting a curtain of air across an open chamber or open pit in which combustion occurs. Incinerators of that type can be constructed above or below ground and with or without refractory walls and floor. ## § 60.1915 What is yard waste? Yard waste is grass, grass clippings, bushes, shrubs, and clippings from bushes and shrubs. They come from residential, commercial/retail, institutional, or industrial sources as part of maintaining yards or other private or public lands. Yard waste does not include two items: - (a) Construction, renovation, and demolition wastes that are exempt from the definition of "municipal solid waste" in §60.1940. - (b) Clean wood that is exempt from the definition of "municipal solid waste" in §60.1940. # § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts 100 percent yard waste, you must only meet the emission limits in this section. - (a) By 180 days after your final compliance date, you must meet two limits: - (1) The opacity limit is 10 percent (6-minute average) for air curtain incinerators that can combust at least 35 tons per day of municipal solid waste and no more than 250 tons per day of municipal solid waste. - (2) The opacity limit is 35 percent (6-minute average) during the startup period that is within the first 30 minutes of operation. - (b) Except during malfunctions, the requirements of this subpart apply at all times. Each malfunction must not exceed 3 hours. ### § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? - (a) Use EPA Reference Method 9 in appendix A of this part to determine compliance with the opacity limit. - (b) Conduct an initial test for opacity as specified in §60.8. - (c) After the initial test for opacity, conduct annual tests no more than 13 calendar months following the date of your previous test. ### § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent vard waste? (a) Provide a notice of construction that includes four items: - (1) Your intent to construct the air curtain incinerator. - (2) Your planned initial startup date. - (3) Types of fuels you plan to combust in your air curtain incinerator. - (4) The capacity of your incinerator, including supporting capacity calculations, as specified in §60.1935(d) and (e). - (b) Keep records of results of all opacity tests onsite in either paper copy or electronic format unless the Administrator approves another format. - (c) Keep all records for each incinerator for at least 5 years. - (d) Make all records available for submittal to the Administrator or for onsite review by an inspector. - (e) Submit the results (each 6-minute average) of the opacity tests by February 1 of the year following the year of the opacity emission test. - (f) Submit reports as a paper copy on or before the applicable submittal date. If the Administrator agrees, you may submit reports on electronic media. - (g) If the Administrator agrees, you may change the annual reporting dates (see §60.19(c)). - (h) Keep a copy of all reports onsite for a period of 5 years. ### **EQUATIONS** ## § 60.1935 What equations must I use? (a) Concentration correction to 7 percent oxygen. Correct any pollutant concentration to 7 percent oxygen using equation 1 of this section: $$C_{7\%} = C_{unc} * (13.9) * (1/(20.9 - CO_2))$$ (Eq. 1) Where: $C_{7\%} = \mbox{concentration}$ corrected to 7 percent oxygen. $C_{\rm unc}$ = uncorrected pollutant concentration. CO_2 = concentration of oxygen (percent). (b) Percent reduction in potential mercury emissions. Calculate the percent reduction in potential mercury emissions (${}^{\circ}P_{Hg}$) using equation 2 of this section: $$%P_{Hg} = (E_i - E_o) * (100 / E_i)$$ (Eq. 2)